New qubits pave way for quantum networks

Researchers have reported in a new study development of new qubits by implanting chromium ions in commercially available silicon carbide substrates.

Scientists report that after annealing at high temperature, they managed to produce single spin defects that can be used for spin qubits. The same method could be used to create vanadium or molybdenum defects as researchers continue the search for the ideal qubit.

Quantum computers may be able to solve science problems that are impossible for today’s fastest conventional supercomputers. Quantum sensors may be able to measure signals that cannot be measured by today’s most sensitive sensors. Quantum bits (qubits) are the building blocks for these devices. Scientists are investigating several quantum systems for quantum computing and sensing applications. One system, spin qubits, is based on the control of the orientation of an electron’s spin at the sites of defects in the semiconductor materials that make up qubits. Defects can include small amounts of materials that are different from the main material a semiconductor is made of. Researchers recently demonstrated how to make high quality spin qubits based on chromium defects in silicon carbide.

Researchers are exploring chromium defects in silicon carbide as potential spin qubits. One advantage of these spin qubits is that they emit light at wavelengths that are compatible with telecommunications optical fibers. This means they are potentially useful for quantum networks that employ optical fiber to connect qubits. Unfortunately, issues with the quality of materials have limited these spin qubits’ viability. Researchers recently investigated new ways to make chromium defects in silicon carbide. They implanted chromium ions into silicon carbide then heated them to more than 1600 degrees Centigrade. This produced a material with spin defects that have a much higher qubit quality. This result could lead to quantum communications that use today’s semiconductor and fiber optic technologies.

Back to top button